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Epidermal permeability–penetrant structure relationships: 4,
QSAR of permeant diffusion across human stratum
corneum in terms of molecular weight, H-bonding

and electronic charge
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Abstract

Principal components analysis (PCA) and multivariate regression analysis (MRA) are used to assess the predictors
of permeant diffusion across human stratum corneum. Log (D/h), was estimated from log kp+0.024−0.59 log Koct,
where D=diffusion coefficient (cm2/h), h=path length (cm), kp permeability coefficient (cm/h), Koct=partition
coefficient (octanol/water). Molecular weight (MW) with (1) scaled H-bonding parameters a and b, or (2) summed
modulus of partial charge from molecular modelling were tested as predictors of (D/h). Charge may be computed for
any molecule, whilst a and b values are generally unavailable for molecules of biological interest. PCA suggests a
dominant permeation pathway since 93% of data variation is in PC1 of log (D/h), MW and charge and 82% in PC1
of log (D/h), MW, a and b. MRA using MW, a and b is unsatisfactory because of collinearity amongst predictors.
The best predictor was the product MW*charge. Similarity of the eigenvectors in PCA and normalised coefficients in
MRA indicates that charge and MW are equally important predictors of diffusion. © 2000 Elsevier Science B.V. All
rights reserved.
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modelling; Diffusion

www.elsevier.com/locate/ijpharm

1. Introduction

Quantitative structure activity relationships
(QSARs) are useful in predicting behaviour of

novel compounds and providing insights into
mechanisms of activity. In transdermal studies the
technique is often based on multivariate regres-
sion analysis of molecular features that determine
an index of permeation such as the permeability
coefficient, kp, or the diffusion of permeant across
some part of the skin. Earlier reports (Lien and
Tong, 1973; Roberts et al., 1977; Roberts, 1991;
El Tayar et al., 1991) were limited to small data
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sets until Flynn (1990) published a collection of
over 90 kp and log Koct values which formed the
basis of prediction of log kp from MW and
log Koct (Potts and Guy, 1992), functional group
contributions (Pugh and Hadgraft, 1994), solva-
tochromic parameters (Abraham et al., 1995;
Roberts et al., 1995), and Hildebrand solubility
parameters (Roberts et al., 1995). Pugh et al.
(1996) criticised the use of the composite term,
kp, and reported the dependency of diffusion
across the SC on MW and the scaled H-bond-
ing values a and b. Wilschut et al. (1995) ques-
tioned the reliability of some of Flynn’s data
and applied inclusion criteria for kp values. Dis-
quiet about data reliability and MRA without
consideration of collinearities and interactions
amongst predictors led us to conduct fresh
analyses using PCA and MRA.

2. Methods

2.1. Partial charge calculation

kp values were obtained from Wilschut et al.
(1995) except atropine, naproxen and nicotine
(Degim et al., 1998), log Koct values were from
Medchem (Biobyte, Claremont, CA). Scaled H-
bonding values, a and b were from Abraham
(1993) and Abraham et al. (1995). Molecular
modelling was performed using the NEMESIS
V1.0 package (Oxford Molecular, Oxford, UK).
Conformation analysis using a step size of 30°
was used to find the approximate energy mini-
mum conformation, followed by optimisation to
identify the minimum energy conformation. This
two step approach reduces the risk of finding a
local minimal energy form. The program calcu-
lates partial charges on atoms on the basis of
inductive effects in saturated molecules and
Huckel molecular orbital calculations for p sys-
tems. The partial charges of the atoms (H, C,
O, N and halogen) constituting the molecule
were noted. Various combinations of these
charges were tried in the statistical analyses, but
none gave superior results to the simple sum of
the modulus of the charges. These summed
charges are given in Table 1. Log (D/h), was

estimated from log kp+0.024−0.59 log Koct

(Pugh et al., 1996).

2.2. Statistical analyses

Statistical analyses were performed with
Minitab release 10.5 (Minitab, State College,
PA, USA). The tests are described in detail in
standard texts to which the interested reader
should refer for authoritative accounts-see for
example Cureton and D’Agostino (1983), Everitt
and Dunn (1991), Hair et al. (1995).

3. Results

Permeants and associated properties are in
Table 1. Principal components analysis (PCA)
results are in Table 2. Regression analysis re-
sults (MRA) are presented in Section 4 as re-
quired. Probabilities that the predictor coeffi-
cients are not significant are shown in italics.
Coefficients of determination (R2) are adjusted
for degrees of freedom (Minitab Reference
Manual, Minitab).

4. Discussion

4.1. Principal components analysis (PCA)

This detects relationships called principal
components (PCs) amongst the variables in a
table (matrix) that account for the data varia-
tion. Consider the PCA relating log (D/h), MW,
a and b as an example (Table 2a).

The sum of eigenvalues is the number of PCs
(4). The eigenvalue of a PC shows the propor-
tion of the total variation in the matrix at-
tributable to that PC. Thus if log (D/h) were
completely determined by a single process in-
volving MW, a and b then PC1 would have an
eigenvalue of 4 and PCs 2, 3, 4 would all be
zero. This proportion for PC1 is 0.82 ( i.e. 3.27/
4). Within PC1 the eigenvector of a variable in-
dicates how much of the variation in data is
attributable to that variable. The communality,
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Table 1
Data used in the analysisa

Log Koct Log D/h a bLog kp ChargeMW

2.00 −3.40 0.79 0.231 3-nitrophenol 1.227139.1 −2.25
1.91 −3.36 0.82−2.25 0.26139.1 1.2352 4-nitrophenol
1.08 −4.85 0.403 aldosterone 1.90360.4 3.826−4.24
1.96 −3.77 *−2.64 *4 amobarbital 2.680226.3

5 atropine 1.83289.4 −4.31 * * 2.939−3.25
0.65 −4.31 *−3.95 *6 barbital 2.413184.2
1.10 −2.39 0.357 benzyl alcohol 0.50108.1 1.362−1.77
2.59 −2.95 0.67−1.44 0.208 4-bromophenol 1.181170.3

−2.5274.12 0.80 −2.97 0.37 0.48 1.2269 butanol
0.80 −3.05 0.37−2.60 0.4874.12 1.22610 butanol

−1.48128.6 2.15 −2.73 * * 1.18011 2-chlorophenol
12 chlorpheniramine 3.39274.8 −4.63 * * 2.030−2.66

1.14 −3.96 *−4.31 *299.4 2.71613 codeine
1.94 −4.64 0.4014 corticosterone 1.63345.5 3.689−3.53
4.57 −3.77 0.37−1.10 0.4815 decanol 1.778158.3

−1.22163.0 3.06 −3.00 * * 1.20516 2,4-dichlorophenol
1.75 −4.89 *−3.89 *218.2 2.01617 diethylcarbamazine

−2.22165.2 0.93 −2.75 * * 2.35018 ephedrine
4.01 −4.84 0.8819 estradiol 0.95272.4 2.680−2.49
4.01 −4.81 0.88−2.47 0.9520 estradiol 2.680272.4
4.01 −4.80 0.8821 estradiol 0.95272.4 2.680−2.46
4.01 −4.74 0.88−2.40 0.9522 estradiol 2.680272.4

−2.39272.4 4.01 −4.73 0.88 0.95 2.68023 estradiol
4.01 −4.63 0.88−2.28 0.95272.4 2.68024 estradiol

−2.27272.4 4.01 −4.61 0.88 0.95 2.68025 estradiol
26 estradiol −2.21 4.01 −4.56 0.88 0.95 2.680272.4

−0.31 −2.79 0.37−3.00 0.4827 ethanol 1.04446.07
−0.31 −2.89 0.3728 ethanol 0.4846.07 1.044−3.10
−0.32 −3.39 0.30−3.60 0.8329 2-ethoxy ethanol 1.55691.10

−2.8074.10 0.93 −3.32 0.00 0.45 0.78730 ethyl ether
2.72 −3.01 0.37−1.42 0.48116.2 1.50231 heptanol

−1.49116.2 2.72 −3.08 0.37 0.48 1.50232 heptanol
2.03 −2.73 0.3733 hexanol 0.48102.2 1.410−1.56
2.03 −3.06 0.37−1.89 0.4834 hexanol 1.410102.2
2.03 −2.95 *35 isoquinoline *129.2 1.007−1.78
1.95 −2.94 0.57−1.82 0.3436 m-cresol 1.222108.1

−2.43247.4 2.45 −3.85 * * 1.86637 meperidine (pethidine)
−0.77 −2.52 0.43−3.00 0.4732.40 0.97038 methanol

−3.3032.40 −0.77 −2.82 0.43 0.47 0.97039 methanol
1.90 −3.1440 methyl 4-OH benzoate 0.69152.1 0.45 1.812−2.04
3.34 −4.48 *−2.54 *230.3 2.16141 naproxen
1.17 −3.15 *42 nicotine *162.2 1.510−2.48
4.26 −3.71 0.37−1.22 0.4843 nonanol 1.686144.3

−1.80108.1 1.95 −2.93 0.52 0.30 1.22044 o−cresol
3.00 −3.03 0.37−1.28 0.48130.2 1.59445 octanol

−1.76108.0 1.94 −2.88 0.57 0.31 1.22146 p-cresol
1.46 −2.5547 phenol 0.6094.10 0.30 1.171−1.71
1.46 −2.92 0.60−2.09 0.3048 phenol 1.17194.10
0.25 −2.98 0.3749 propanol 0.4860.00 1.134−2.85
0.25 −2.89 0.37−2.77 0.4850 propanol 1.13460.00

60.00 −2.92 0.25 −3.04 0.37 0.48 1.13451 propanol
2.26 −4.79 *−3.48 *138.1 2.11652 salicylic acid
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Table 1 (Continued)

Log kp Log Koct Log D/hMW a b Charge

−2.20 2.26 −3.5153 salicylic acid *138.1 * 2.116
−4.30 1.24 −5.01 *54 scopolamine *303.4 3.124
−2.66 3.32 −4.59287.4 0.3255 testosterone 1.19 2.478
−1.28 3.30 −3.20 0.52 0.44 1.44456 thymol 150.1
−1.23 3.69 −3.38 * * 1.214197.457 2,4,6-trichlorophenol

a Log kp values (cm/h) are from Wilschut et al. (1995) and Degim et al. (1998), log Koct from the Medchem database, log (D/h)
calculated from log kp+0.024−0.59 log Koct (Pugh et al., 1996), a and b are the scaled H-bonding donor and acceptor values of
Abraham (1993) and Abraham et al. (1995) and the charge is the sum of the modulus of partial charges calculated as described in
the text.

defined as the sum of the squares of the eigenvec-
tors (0.542)+ (−0.542)+ (−0.442)+ (−0.482)=
1. The contribution of log (D/h) is thus 0.29 (i.e.
0.542) which means it plays an important role in
the PC (or mechanism). Eigenvector sign is signifi-
cant, so that PC1 suggests a mechanism involving
log (D/h) inversely with MW and H-bonding.
PCA thus enables us: (1) to identify relationships
between groups of variables; (2) estimate the im-
portance of each relationship in determining the
overall process and (3) estimate the importance of
each variable within a relationship.

4.1.1. Multi6ariate regression regression analysis
(MRA)

This calculates a least squares fit between an
outcome such as log (D/h) and a number of pre-
dictors of the outcome. It has been used exten-
sively to identify and quantify the effect of
predictors on skin permeability parameters (Kam-
let et al., 1988; Potts and Guy, 1992; Pugh and
Hadgraft, 1994; Abraham et al., 1995; Roberts et
al., 1995; Wilschut et al., 1995; Pugh et al., 1996).
Two important criteria are negligible error associ-
ated with the predictors and absence of collinear-
ity (correlations) amongst the predictors.

4.2. Examination of the mechanisms that
determine kp

We have previously (Pugh et al., 1996) criticised
the use of the composite term, log kp (i.e.
log Ksc+ log D/h) as the dependent variable in
MRA. PCA using log kp instead of log D/h sup-
ports these doubts. Consider the PCA results
(Table 2c) for the relationship between log kp,

MW and log Koct suggested by Potts and Guy
(1992).

PC1 accounts for 55% of the data variation and
PC2 for 43%, suggesting that two mechanisms-
presumably partition and diffusion-are involved.
As expected there is a direct relationship between
log kp and log Koct (a measure of lipophilicity),
but the relationship between log kp and MW is
also direct (not inverse as in the Potts and Guy
regression). This is difficult to explain in mecha-
nistic terms, suggesting that the interaction be-
tween log Koct and MW is a confounding effect.
PC2 shows an inverse relationship between log kp

and MW. We therefore decided to eliminate
log Koct from the predictor variables by using it to
calculate log (D/h) from log kp. This has the addi-
tional bonus of using a more fundamental quan-
tity in QSAR analysis.

4.3. Elimination of outliers

Meta analysis involving data from a multiplic-
ity of sources, coupled with the high experimental
variability associated with permeability studies
(Southwell et al., 1984) makes it likely that some
data will be unreliable. Although Wilschut et al.
(1995) applied strict exclusion criteria to their
collection we applied two extra checks for out-
liers. The first involved plotting PC2 against PC1
(Fig. 1a,b). This gives a non-quantifiable indica-
tion of unusual data. The second measured the
deviation of experimental from regression values
as DFIT values. DFIT combines leverage (mea-
surement of how unusual a predictor set is) and
Studentized residual (residual for a compound
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Table 2
Principal components analysisa

PC3 PC4PC1 PC2

(a) Matrix of log (D/h), MW, a and b; 36 data 6alues
Eigenvectors

0.22 0.81Log (D/h) 0.54 0.10
−0.12 0.530.01MW −0.54

0.65a 0.07−0.44 0.79
0.43 0.24−0.61b −0.48
0.49 0.05Eigenvalue 3.27 0.58

0.14 0.020.82 0.01Proportion of vari-
ation

Cumulative propor- 0.960.82 0.98 1.00
tion

(b) Matrix of log (D/h), MW, charge; 36 data 6alues
Eigenvectors

0.58 −0.40 0.71Log (D/h)
0.39−0.58 0.71MW

−0.01−0.82−0.57Charge
0.06Eigenvalue 2.78 0.17
0.020.06Proportion 0.93

Cumulative 1.000.93 0.99

(c) Matrix of log kp, MW, log Koct; 57 data 6alues
Eigenvectors

0.35 0.77 −0.52Log kp

0.57MW 0.54 −0.63
−0.640.08Log Koct 0.77

0.07Eigenvalue 1.65 1.28
0.020.43Proportion 0.55

Cumulative 1.000.55 0.98

(d) Matrix of log (D/h), MW, charge. 52 data 6alues
Eigenvectors

0.59 −0.34 0.74Log (D/h)
−0.56 −0.82 0.07Charge

0.670.45MW −0.58
0.13Eigenvalue 2.64 0.24
0.040.08Proportion 0.88
1.00Cumulative 0.88 0.96

(e) Matrix of log (D/h), MW, charge; Subset 1: 26 data
6alues
Eigenvectors

0.59 −0.34 0.72Log (D/h)
0.67MW −0.58 0.46
0.07−0.82Charge −0.56
0.13Eigenvalue 2.64 0.24
0.040.08Proportion 0.88
1.00Cumulative 0.88 0.96

( f ) Matrix of log (D/h), MW, charge; Subset 2: 26 data
6alues
Eigenvectors

0.59 −0.27 0.76Log (D/h)
MW 0.51 0.63−0.55

0.15Charge −0.82−0.56

Table 2 (Continued)

PC3PC2PC1 PC4

2.63Eigenvalue 0.100.27
Proportion 0.88 0.030.09

0.97Cumulative 0.88 1.00

a Eigenanalysis of the correlation matrix.

when its predictors are omitted from the regres-
sion). Data are regarded with suspicion if the
DFIT value exceeds 2
[(k+1)/n ] where k is the
number of predictors and n the number of data
points (Minitab Reference Manual, Minitab).

This procedure was applied to the 40 com-
pounds for which a and b values were available.
PCA (Fig. 1a, b) suggests that aldosterone, cor-
ticosterone, estradiol and ethyl ether are unusual
when examined on the basis of both charge and
H-bonding properties. DFIT plots (Fig. 2) sug-
gest that aldosterone, corticosterone, 4-bro-
mophenol and ethyl ether were very unusual and
they were excluded from the analysis in Section
4.4.

4.4. Comparison of H-bonding and charge as
predictors of diffusion, data set of 36 compounds

4.4.1. PCA comparison
A PC describes a relationship between log (D/

h) and the other variables, so that the existence
of non polar and polar pathways would be ex-
pected to give rise to individual PCs. Jolliffe
(1986) recommends that PCs with eigenvalues
B0.75 should be ignored, so that PCA on the
basis of both H-bonding and charge (Table
2a,b) indicates a single, dominant mechanism.
PC1 of log (D/h), MW, a and b (Table 2a) ac-
counts for 82% of data variation, and the eigen-
vector signs show inverse relationships between
log (D/h) and both size and H-bonding. This is
consistent with diffusion along a non polar
pathway hindered by interaction with immo-
bilised polar head groups in the SC lipids (Pugh
et al., 1996).

A similar conclusion is reached when charge is
used instead of H-bonding (Table 2b), where
PC1 accounts for 93% of data variation.



W.J. Pugh et al. / International Journal of Pharmaceutics 197 (2000) 203–211208

Fig. 1. Plots of the first and second principal components for
40 compounds. (a) Correlation matrix of log (D/h), MW, a, b.
(b) Correlation matrix of log (D/h), MW, charge.

PB0.001, PB0.001, 0.046, PB0.001; N=36;
S.D.=0.223; R2=0.92.

Although collinearity between MW and a and
b may be significant (R values 0.75 and 0.81,
respectively).

Detailed analyses of all possible interaction
terms showed significant interaction between MW
and both a and b. Better regressions were ob-
tained using MW*a and MW*b although
collinearity was still high (R=0.87).

log(D/h)

= −2.65−0.00326 MW*a−0.00501 MW*b

(2)

PB0.001, 0.002, PB0.001; N=36; S.D.=0.230;
R2=0.92.

The regression of log(D/h) against MW and
charge was less satisfactory:

log(D/h)= −2.03−0.00738 MW−0.212 charge
(3)

PB0.001, PB0.001, 0.095; N=36; S.D.=
0.261; R2=0.89.

Because of the high value of P for charge and
high collinearity (R=0.86) of MW and charge.

Fig. 2. Plots of the DFITs values for the regressions of
log (D/h) against MW, a, b and MW, charge. Forty com-
pounds. Grid lines define outliers.

4.4.2. MRA comparison
Interpretation is complicated by correlation be-

tween MW and the other predictors and the anal-
ysis should check for predictor interactions by
including their product terms.

The regression of log (D/h) against MW a and
b is satisfactory:

log (D/h)

=1.76−0.00490 MW−0.597 a−1.14 b (1)
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Fig. 3. Comparison of log (D/h) values predicted by regression
against MW, a, b and MW, charge. Thirty-six compounds.

ular modelling while a and b values are generally
unavailable for multifunctional compounds of in-
terest in permeability applications. However there
is an obvious absence of data for log (D/h) from
−3.5 to −4.5 and the only molecules of pharma-
cological interest are testosterone and estradiol.

4.5. Examination of an extended dataset using
MW and charge as predictors

Since molecular modelling enables calculation
of charge, the gap around log (D/h)−4 was filled
using an extended dataset. Diethylcarbamazine,
codeine, aldosterone, corticosterone and
ephedrine were excluded after screening (Section
4.3) and analyses performed on the remaining 52
compounds.

PCA (Table 2d) shows a dominant mechanism
with log (D/h) inversely related to MW and
charge. The eigenvectors in PC1 indicate equal
importance of log (D/h), MW and charge.

Although regression analysis appears
satisfactory:

log (D/h)

= −1.99−0.00617 MW−0.332 charge (5)

PB0.001, PB0.001, 0.006; N=52; S.D.=0.360;
R2=0.79.

The high collinearity of charge and MW (R=
0.78), suggests that the interaction term
MW*charge is a better predictor of log (D/h):

log (D/h)= −2.70−0.00264 MW*charge (6)

PB0.001, PB0.001; N=52; S.D.=0.366; R2=
0.78.

Fig. 4 plots experimental against predicted val-
ues. The 95% confidence interval (CI) gives limits
for the value of log (D/h), while the 95% predic-
tion interval gives limits for its experimental de-
termination (Bolton, 1984).

4.6. Relati6e importance of size and charge

The similarity of eigenvectors for MW (0.58)
and charge (0.56) in PC1 (Table 2d) indicates
equal importance of these factors.

In regression analysis direct comparison of the
coefficients is meaningless because charge varies

Fig. 4. Log (D/h) experimental values versus values predicted
fitted from the regression against MW*charge. Ninty-five per-
cent prediction and confidence intervals shown. Fifty-two
compounds.

The cross product term MW*charge is the only
predictor necessary and removes the collinearity
problem.

log(D/h)= −2.62−0.00283 MW*charge (4)

PB0.001, PB0.001; N=36; S.D.=0.235;
R2=0.91.

Log (D/h) predicted from either H-bonding or
charge are very similar (Fig. 3). This is useful
since charge may be easily calculated from molec-
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from 0.8 to 3.8 and MW from 46 to 360. When
predictor values were normalised by subtracting
means and dividing by standard deviations the
similarity of coefficients suggests approximately
equal importance of size MW and charge.

log (D/h)

= −3.54−0.501 MWc −0.234 chargec (7)

PB0.001, PB0.001, 0.006; N=52; S.D.=
0.360; R2=0.79.

4.7. Check for idiosyncraticity of the data set

A pitfall in data analysis is that conclusions
might be idiosyncratic for the particular data set
and not of general application. The data were
divided into two subsets. The PCA results are in
Table 2e and f, and regression analyses are:

Subset 1:

log (D/h)= −2.76−0.00260 MW*charge (8)

PB0.001, PB0.001; N=26; S.D.=0.421;
R2=0.73.

Subset 2:

log (D/h)= −2.65−0.00268 MW*charge (9)

PB0.001, PB0.001; N=26; S.D.=0.313;
R2=0.84.

The similarity between results for the subsets
indicates that the conclusions are of general
significance.

Appendix A. Abbreviations and symbols

scaled values of H-bond donor and re-a, b

ceptor potentials
D diffusion coefficient (cm2/h)
h Diffusional path length across stratum

corneum (cm)
kp permeability coefficient (cm2/h)
Koct octanol/water partition coefficient

multivariate regression analysisMRA
molecular weightMW

N number of data points
probability of errorP
nth principal componentPCn

PCA principal component analysis
correlation coefficientR
coefficient of determination adjustedR2

for degrees of freedom
SC stratum corneum
S.D. standard deviation
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